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A Clustering Framework for Unsupervised and
Semi-supervised New Intent Discovery

Hanlei Zhang, Hua Xu, Member, IEEE, Xin Wang, Fei Long, Kai Gao

Abstract—New intent discovery is of great value to natural language processing, allowing for a better understanding of user needs and
providing friendly services. However, most existing methods struggle to capture the complicated semantics of discrete text
representations when limited or no prior knowledge of labeled data is available. To tackle this problem, we propose a novel clustering
framework, USNID, for unsupervised and semi-supervised new intent discovery, which has three key technologies. First, it fully utilizes
unsupervised or semi-supervised data to mine shallow semantic similarity relations and provide well-initialized representations for
clustering. Second, it designs a centroid-guided clustering mechanism to address the issue of cluster allocation inconsistency and
provide high-quality self-supervised targets for representation learning. Third, it captures high-level semantics in unsupervised or
semi-supervised data to discover fine-grained intent-wise clusters by optimizing both cluster-level and instance-level objectives. We
also propose an effective method for estimating the cluster number in open-world scenarios without knowing the number of new intents
beforehand. USNID performs exceptionally well on several benchmark intent datasets, achieving new state-of-the-art results in
unsupervised and semi-supervised new intent discovery and demonstrating robust performance with different cluster numbers.

Index Terms—new intent discovery, clustering, representation learning, semi-supervised learning, deep neural networks.

✦

1 INTRODUCTION

D ISCOVERING new intents is an important aspect of
natural language processing, as it has numerous ap-

plications in dialogue and user-modeling systems [1], [2].
These newly discovered intents can help to enrich the intent
taxonomy and improve the natural language understanding
capabilities of dialogue systems in interacting with users [3].
In addition, they can be used to improve user profiles
and analyze user interests and preferences, leading to more
personalized services [4].

Typical intent understanding tasks use annotated intent
corpora to train a supervised classification model [5], with
the goal of accurately predicting the corresponding intent
category for each text utterance. However, in widespread
real-world applications, there are two main difficulties. First,
pre-defined intent categories may not be sufficient to cap-
ture the complexity and diversity of user needs, requiring
the effective mining of potential clusters of user demands
and the formation of new intents. Second, in practice,
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there is often a large amount of unlabeled data, making it
labor-intensive and time-consuming to annotate a sufficient
quantity of high-quality intent data. Therefore, it is of great
significance to find ways to make full use of unlabeled data
or semi-supervised data with a limited amount of labels.

To address these issues, we consider the new intent
discovery task, which is a clustering problem. For semi-
supervised new intent discovery, we randomly select a
portion of intent classes as known and the rest as new
intents. Considering the scarcity of labeled data in real
applications, we mask most labels with known intents (i.e.,
90%). The masked known-intent samples and new-intent
samples constitute the unlabeled data. The goal is to use
limited labeled and a large amount of unlabeled data to find
known and discover new intent groups. For unsupervised
new intent discovery, it aims to discover new intent groups
without any prior knowledge of labeled data.

Novel category discovery (NCD) [6], [7] is similar to our
task in computer vision (CV). The main difference is that
it assumes unlabeled data only come from novel classes,
which is inapplicable in real-world scenarios as unlabeled
data usually contain a mix of known and novel categories.
While GCD [8] proposed a generalized setting to address
this issue, it still requires a larger proportion of labeled data
(e.g., 50% v.s. 10%) and does not provide a solution for the
unsupervised setting. Additionally, experiments show that
the methods used in NCD [9] and GCD [8] have limitations
when applied to our task due to their difficulty in learning
the complex semantics of discrete text representations.

The study of new intent discovery has gained attention
in recent years. We made the first trials on this task [3],
[10], and subsequent works have made further progress
in improving performance [11], [12], [13]. It has also been
successfully applied in real applications to discover user
consumption intents [2]. There are three main challenges
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Fig. 1. Overview of the USNID framework for new intent discovery. The unsupervised pipeline first captures primary semantic features from
unlabeled data through a pre-training phase and then learns high-level intent representations with two iterative steps. One uses cluster centroids
as guidance to obtain consistent targets aligned with the last clustering. The other uses those targets to learn friendly representations for the next
clustering. The semi-supervised pipeline further leverages the labeled data as prior knowledge to improve clustering and representation learning.

in this task. Firstly, current methods still heavily rely on
labeled data, and their performance suffers significantly in
a completely unsupervised setting without any extra knowl-
edge [10], [13]. Secondly, in a semi-supervised scenario, we
need to take full advantage of limited labeled data and
transfer its knowledge to guide unlabeled data to learn
intent representations conducive to clustering. Thirdly, the
number of new intents may not be known in advance. In
this case, effectively estimating the cluster number is also a
crucial factor in determining the final performance.

To tackle these problems, we propose a novel cluster-
ing framework called USNID for unsupervised and semi-
supervised new intent discovery, as shown in Figure 1.
The unsupervised new intent discovery consists of two key
steps. The first step is to pre-train the model by applying
unsupervised contrastive learning on unlabeled data. We
construct positive pairs with each sample and its corre-
sponding strong data augmentation. The second step is
to learn high-level intent-wise characteristics through an
iterative process of clustering and self-supervised learning.

However, the cluster assignments from the partition-
based method (e.g., K-Means [14]) may not be consistent
for the same sample across different clustering, making
it difficult to use them as pseudo-labels to train a stable
classifier for discriminating new intent classes. To over-
come this issue, we introduce a centroid-guided clustering
mechanism that leverages cluster centroids from adjacent
clustering as guidance to obtain aligned targets. One way to
achieve this is by minimizing Euclidean distances between
the two cluster centroid matrices globally to obtain an
alignment projection. Still, each clustering process can still
be inefficient and prone to falling into local optima due to
the randomness of initial cluster centroid selection. To mit-
igate this, we propose a centroid initialization strategy that
leverages the cluster centroids from the previous iteration’s
clustering to initialize the current iteration’s clustering. This
strategy can improve convergence with the prior knowledge
of historical clustering information. Moreover, the produced
cluster assignments are usually consistent with the results
of centroid alignment, which can be directly used as self-
supervised signals for representation learning. It is also
important to select a suitable self-supervised learning objec-
tive to provide friendly representations for the next cluster-
ing. The designed objective captures both cluster-level and
instance-level information using aligned targets. The former
learns a discriminator to distinguish different fine-grained
intent classes, while the latter aims to enhance the semantic

similarity relationships between instances with intra-class
compactness and inter-class separation properties.

The semi-supervised new intent discovery process uses
labeled data in two ways to improve performance. First,
we optimize the pre-training phase using a combination
of semi-supervised contrastive learning and known-intent
classification objectives, which utilize limited labeled data
to guide the learning of primary semantic features in a large
amount of unlabeled data. Second, we incorporate a super-
vised contrastive learning objective to enhance the memory
of the limited labeled data and improve the ability to cluster
and learn representations. Nevertheless, the approach still
requires the cluster number to be specified in advance,
which is not practical in real-world situations. Thus, we
propose a simple and effective method for estimating the
number of new-intent classes. Our method only requires
one clustering operation using a large, pre-defined number
of clusters. The main idea is to use the knowledge acquired
during the pre-training phase to find high-quality clusters
that are denser than a certain threshold. In semi-supervised
scenarios, limited labeled data can be used to induce clusters
corresponding to known intents and avoid interference with
the estimation of the number of new intents.

Our USNID framework is evaluated on several bench-
mark intent datasets and compared with 15 algorithms
that can be used in unsupervised and semi-supervised new
intent discovery. It is the first successful attempt at unsuper-
vised new intent discovery, resulting in an absolute increase
of 20-30% adjusted rand index (ARI) over the state-of-the-
art (SOTA) unsupervised clustering method. In addition, it
achieves new SOTA performance in semi-supervised new
intent discovery, showing substantial improvements over
previous best-performing methods under different known
class ratios. The method of estimating the number of intent
classes is also evaluated and found to accurately predict
the actual number with the lowest errors compared with
other estimation methods. Even when the cluster number is
varied in a wide range, our approach still achieves robust
and the best performance among all methods.

2 RELATED WORKS

In this section, we briefly review the most relevant research
in areas of unsupervised and constrained clustering, novel
class discovery, and new intent discovery.

There are numerous classic unsupervised clustering
technologies in the literature [14], [15]. K-Means is a par-
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ticularly attractive partitioning method among them due
to its simplicity and relatively low time complexity [16].
However, it can suffer from poor performance due to the
arbitrary sampling of centroids. Therefore, several variants
of K-Means have been proposed to address this issue [17],
[18]. K-Means++ [18] is selected in this work due to its
superior convergence and speed. Deep neural networks
(DNNs) have gained popularity in recent years due to
their proficiency in handling high-dimensional data and
capture complex underlying semantics [19]. As a result,
deep clustering methods have been widely studied [20]. For
example, Deep embedded clustering (DEC) [21] utilizes a
stacked autoencoder (SAE) [22] for low-dimensional feature
learning and cluster assignment optimization. Deep cluster-
ing network (DCN) [23] also uses an SAE, optimizing both
reconstruction loss and K-Means-like regularization. Deep
adaptive clustering (DAC) [24] learns pairwise similarities
from confident samples, and DeepCluster [25] alternates
between clustering and feature learning. Unsupervised con-
trastive learning [26] is a rising approach, as seen in Con-
trastive clustering (CC) that performs instance and cluster-
level contrastive learning, and SCCL [26], which optimizes
instance-level contrastive loss and clustering loss for supe-
rior text clustering.

Constrained clustering [27], introduced to enhance
unsupervised clustering through extra supervised sig-
nals (e.g., labeled data), includes methods like COP-
KMeans [28] which incorporates hard pairwise constraints.
PCK-Means [29] handles constraint violations with penalty
terms while MPCK-Means [30] adds a distance metric learn-
ing objective. DNNs are employed for powerful constrained
clustering representations in methods like KCL [31] and
MCL [32]. KCL trains a DNN with pairwise similarity
data and generates weak-supervised signals for unlabeled
data. MCL uses categorical distribution similarities as weak
pairwise constraints. ASFS [33] optimizes relationships in
diverse data types using unlabeled data and semantic re-
gression, and it uses a graph-based constraint for accurate
label prediction. ASTCA [34] introduces an adaptive model
applied successfully in UAV tracking, providing a unique
perspective on unsupervised clustering.

Novel class discovery [6] in computer vision aims to
identify new visual classes using labeled data. Approaches
include DTC [9], which pre-trains a model with labeled data
and incorporates temporal ensemble predictions into DEC
loss, and introduces a method to estimate the number of
new classes. RankStats [35] uses unlabeled, self-augmented
data in pre-training and calculates pairwise similarities via
ranking statistics. UNO [7] optimizes with a unified cross-
entropy loss by swapping pseudo-labels of concatenated
neural classifier outputs from labeled and unlabeled data.
However, these methods assume unlabeled data includes
only new classes, which might not be appicable in the
real world. GCD [8] rectifies this by accommodating both
known and new classes in unlabeled data, combining su-
pervised and unsupervised contrastive losses for represen-
tation learning and semi-supervised k-means for inference.
Despite its superior performance in this task, it struggles
with discrete text representations.

The research of new intent discovery is still in its infancy.
Prior studies typically focus on known intent classifica-

tion within closed-world scenarios, utilizing typical intent
benchmark datasets [36], [37]. More recently, attention has
shifted to a related area known as open intent detection [38],
[39], which seeks to detect the unknown class during testing
but lacks the ability to discern fine-grained new classes.
We have conducted a pilot study using the CDAC+ [3]
algorithm, which first captures pairwise sentence relation-
ships with the guidance of labeled data and then refines
cluster assignments with the DEC loss. Another of our
works, DeepAligned [10], initializes intent representations
under the supervision of labeled data and then iteratively
performs clustering and representation learning, aligning
cluster centroids between adjacent iterations to obtain con-
sistent self-supervised signals. DCSC [12] improves the pre-
training stage by applying contrastive losses to both labeled
and unlabeled data. It mainly uses the SwAV [40] algorithm
for unsupervised learning, which requires each sample to
predict the swapped view and uses Sinkhorn-Knopp [41]
to produce soft cluster assignments. MTP-CLNN [13] is the
current SOTA method, which has two key features. First,
it enhances representations by incorporating strong prior
knowledge from a network pre-trained on external data in
the intention domain (i.e., CLINC dataset [42]) and adding
a masked language modeling (MLM) task. Second, it adapts
the SCAN algorithm [43] to the semi-supervised setting,
creating positive pairs with K-nearest neighbors (KNNs)
or samples with the same labels for contrastive learning.
However, this method relies heavily on the selected external
data, and its performance drops dramatically in a purely
unsupervised scenario [13].

3 PROBLEM FORMULATION

Unsupervised setting: We are given an intent dataset Dun =
{xi|yi ∈ I, i = 1, ..., N}, where xi is the ith utterance, yi is
the ground-truth label (unseen during training), N is the
number of all utterances. I = {Ii}Ki=1 is the set of intent
labels, where K is the number of intent classes. The goal of
unsupervised new intent discovery is to cluster {xi}Ni=1 into
K intent groups.

Semi-supervised setting: We are given an intent dataset
Dsemi = {Dl

semi,Du
semi}, where Dl

semi and Du
semi are subsets

with limited labeled data (e.g., the labeled ratio |Dl
semi|

|Dsemi| <

10%) and unlabeled data, respectively.
Specifically, Dl

semi = {(xi, yi)|yi ∈ Iknown, i = 1, ...,M},
where M is the number of labeled utterances, Iknown =
{Ii}K

known

i=1 is the set of known intent labels. Kknown is the
number of known intent classes which is smaller than K
(e.g., the known class ratio Kknown

K is varied among 25%, 50%,
and 75% in this task).

Du
semi = {xi|yi ∈ I, i = M + 1, ..., N}, where I =

{Iknown, Inew}, and Inew = {Ii}Ki=Kknown+1 is the set of new
intent labels. Note that Du

semi also contains samples from
Iknown, which is closer to real-world applications with a
mixture of both known and new classes for unlabeled data.
In comparison, Du

semi only contains samples from Inew in
the similar new class discovery task [6]. The goal of semi-
supervised new intent discovery is to use Dl

semi as prior
knowledge to help learn clustering-friendly representations
and find known and discover new intent groups.
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Fig. 2. The pipeline of unsupervised new intent discovery. It first pre-trains the model by applying unsupervised contrastive learning with strong
augmented samples. Then, it alternatively performs clustering and representation learning. On the one hand, an efficient centroid-guided clustering
algorithm is introduced to produce aligned cluster assignments between adjacent clustering, which can converge well and be used as high-quality
self-supervised signals. On the other hand, we learn cluster-level and instance-level information to obtain clustering-friendly intent representations.

4 METHODOLOGIES

In this section, we introduce a new clustering framework,
USNID. The pipelines of unsupervised and semi-supervised
new intent discovery are presented in Figure 2 and Figure 3.

4.1 Intent Representation
The pre-trained BERT language model shows excellent per-
formance in a wide range of NLP tasks [44]. Thus, it is
adopted to extract deep intent representations.

Specifically, for each utterance xi, we take it as input to
BERT in the needed format (i.e., the first token is [CLS]) and
obtain its final hidden vectors [C, T1, ..., TL] ∈ R(L+1)×H

of each token through non-linear projection layers of BERT,
where L is the length of the ith utterance, H is the hidden
size 768. The sentence representation si ∈ RH is first ob-
tained by applying mean-pooling operation on the hidden
vectors of these tokens:

si = mean-pooling([C, T1, ..., TL]). (1)

Then, a fully-connected layer h is added to enhance
the capability to capture the complex semantics of high-
dimensional text data, yielding the intent representation
Ii ∈ RD :

Ii = h(si) = Whsi + bh, (2)

where D is the feature dimension, Wh ∈ RH×D and bh ∈
RD are weight matrices and bias vectors, respectively.

4.2 Unsupervised New Intent Discovery
4.2.1 Unsupervised Pre-training
Initially, samples from different intent classes often over-
lap in the feature space, which can hinder the clustering

optimization, leading to suboptimal clusters [45]. Well-
initialized intent representations, which should be dis-
tributed uniformly in the feature space and effectively re-
flect the data characteristics, can improve clustering perfor-
mance and convergence [16], [18]. Therefore, our goal in
pre-training the model is to push apart distinct samples
while capturing implicit semantic relationships between
augmented pairs.

Given that only unlabeled data are available, a common
way to construct positive pairs is to use two augmented
views of the same sample, as suggested in [26]. In particular,
let x̃i and x̃′

i be two views of xi in a mini-batch of n
samples. x̃i and x̃′

i are treated as a positive pair, and they
form negative pairs with the remaining 2n − 2 augmented
samples. They are first encoded as intent representations Ĩi

and Ĩ
′
i, as introduced in section 4.1. Then, we add a non-

linear projection head fu
1 : RD → RK to obtain zi and z′

i.
The unsupervised contrastive loss Lucl is defined as:

Lucl = − 1

2n

2n∑
i=1

log
exp(sim(zi, z

′
i)/τ)∑2n

j=1 I[j ̸=i] exp(sim(zi, zj)/τ)
, (3)

where sim(a, b) performs dot product on L2-normalized
a and b, τ is the temperature parameter, and I(·) is an
indicator function outputs 1 iff j ̸= i and 0 otherwise.

A simple yet effective method, random erase, is used
as a strong data augmentation for new intent discovery.
Specifically, for an utterance xi with length L, we randomly
select ⌊L × a%⌋ different words and erase them from xi,
where a is the erase ratio in a sentence. The intuition is that
this operation explicitly provides hard positive pairs (i.e.,
different missing sets of words) for contrastive learning,
which is beneficial to capture the fine-grained semantic
relations between different local word sets in a sentence.
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After pre-training, we remove the head used in contrastive
learning to avoid any unwanted bias that might interfere
with the subsequent steps. The rest of the backbone is saved
for clustering and representation learning.

4.2.2 Centroid-guided Clustering

Partitioning clustering methods such as the K-Means algo-
rithm can be used to discover intent-wise clusters. How-
ever, its effectiveness can be compromised by the choice of
initial centroids. In scenarios where the initial centroids are
suboptimal, the algorithm risks falling into a local minima,
resulting in unsatisfactory clustering. This shortcoming is
addressed by K-Means++ [18], which adopts a probabilistic
approach to select new centroids, thereby improving con-
vergence and achieving an optimal solution more quickly
than the standard K-Means. Consequently, our work utilizes
K-Means++ for clustering purposes.

We found that directly using K-Means++ still performs
poorly due to a lack of guidance to help enhance the intent
representation capability. Thus, we aim to use the clustering
information to construct high-quality self-supervised sig-
nals for learning high-level intent representations. A natural
way to do this is to use the cluster assignments as pseudo-
labels for supervision. This is based on the typical clustering
approach proposed by [25], where they alternate between
clustering and optimizing the convnets based on predicting
the cluster assignments. They demonstrate structured out-
puts of neural networks used as weakly supervised signals
can also benefit the unsupervised representation learning.
However, a challenge arises as the same sample could be
assigned to different clusters across multiple iterations due
to centroid selection randomness. Although Caron et al. [25]
propose randomly re-initializing classifier parameters be-
fore each training iteration to address this, this strategy fails
to make effective use of historical training information [46].

In this work, we introduce a novel centroid-guided
mechanism to address inconsistencies in self-supervised
targets between training iterations and enhance knowledge
retention in the classifier. Noting that while cluster assign-
ments may fluctuate between iterations, cluster centroids
remain relatively stable due to their global optimization
as averaged features, we propose using these centroids as
guidance. This approach aims to provide consistent self-
supervised targets across training iterations and preserve
the well-trained knowledge of the classifier, enhancing the
overall effectiveness of the iterative process.

In particular, the cluster centroids and assignments in the
last and current training iterations are denoted as C(t−1),
y(t−1), and C(t), y(t), respectively. After the (t−1)th cluster-
ing, y(t−1) is used as supervision for feature learning, which
helps capture similarity relationships of the samples close to
C(t−1). The updated representations are then used for the
(t)th clustering, which generates C(t). The intuition is that
C(t) and C(t−1) have relatively consistent distributions in
the feature space, and C(t) is aligned with C(t−1) to obtain
the optimal mapping Gopt as below:

Gopt = argmin
G

{
K∑
i=1

∥C(t)
i −C(t−1)

gi ∥2

}
, (4)

where G : {1, ...,K} → {1, ...,K} is a one-to-one mapping,
gi = G(i) is the centroid index corresponding to i in the
last iteration. It can be optimized with the Hungarian algo-
rithm [47] to obtain Gopt. Then, C(t) and y(t) are updated
by:

C
(t)
i = C

(t−1)
g′
i

, s.t. g′i = G−1
opt(i),∀i ∈ {1, ...,K}, (5)

y
(t)
i = G−1

opt(y
(t−1)
i ),∀i ∈ {1, ..., N}, (6)

where G−1
opt is the inverse mapping of Gopt. The preliminary

results of this centroid-guided alignment strategy have been
presented in our previous work [10] and show substantial
improvements compared with the re-initialization strategy.

However, this strategy is not efficient due to the high
time cost of multiple clustering. The reason is that each
clustering (i.e., K-Means++) also needs to initialize the first
centroid at random, which may select sub-optimal centroids
and lead to a degradation of convergence. Thus, finding the
optimal solution will take a lot more time. To solve this
problem, we propose a concise centroid-guided initializa-
tion strategy, aiming to leverage the historical clustering in-
formation to improve convergence. Specifically, K-Means++
is only performed at the first training iteration. Then, the
cluster centroids produced in the (t− 1)th training iteration
are used to initialize K-Means, yielding y(t) and C(t):

y(t),C(t) =

K-Means++
(
I(t)

)
, if t = 0,

K-Means
(
I(t),C(t−1)

)
, if t ≥ 1.

s.t. I(t) = Learn(I(t−1),y(t−1)), t ≥ 1; t ∈ N, (7)

where I(0) denotes the initial intent representations after
pre-training, Learn(I,y) denotes the representation learn-
ing process with pseudo-labels y as supervision, which will
be introduced in section 4.2.3 in detail. With a random cen-
troid initialization, we need to perform alignment between
C(t−1) and C(t) to obtain Gopt as in Eq. 16. Interestingly, we
found that this strategy does not need the alignment pro-
cess, as experiments show that Gopt(i) = i, ∀i ∈ {1, ...,K}
usually works, and y(t) can be directly used as aligned
targets, which also converge well. It is reasonable because
centroid initialization ensures the stability of cluster alloca-
tion targets between adjacent clustering and is beneficial to
find the optimal solution with prior knowledge of previous
cluster centroids.

The stopping criterion of training is to compare cluster
assignments between adjacent clustering y(t) and y(t−1):

δ =

∑N
i=1 I

{
y
(t)
i ̸= y

(t−1)
i

}
N

, (8)

where I(·) is the indicator function that outputs 1 only if
the condition holds. Otherwise, it outputs 0. δ indicates the
proportion of the difference between y(t) and y(t−1), which
values are in the range of [0, 1]. It can well reflect the conver-
gence of the proposed clustering algorithm. The procedure
will be stopped when δ is smaller than some threshold δth.
During the inference phase, we perform another K-Means
using the cluster centroids that have been well-trained in
the previous clustering as the initialization.
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Semi-supervised Pre-training
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Fig. 3. The pipeline of semi-supervised new intent discovery. On the basis of unsupervised new intent discovery, it enhances the pre-training stage
by incorporating labeled data through the use of both semi-supervised contrastive and cross-entropy losses. It also improves the clustering and
representation learning stage by adding a supervised contrastive learning step on labeled data to address the issue of catastrophic forgetting.

4.2.3 Self-supervised Learning
After each clustering, we learn discriminative intent repre-
sentations to further promote the subsequent clustering. We
achieve this through a dual learning strategy that operates
at both the instance and cluster levels, drawing inspiration
from the methodologies presented in recent studies [40],
[43]. Instance-level learning focuses on ensuring that similar
instances are allocated to the same class while differentiating
them from instances that belong to other classes. This proves
especially effective under strong data augmentations [48].
It fosters the development of intra-class compactness and
inter-class separability within our model, both of which are
fundamental properties that aid in clustering.

Simultaneously, we perform cluster-level learning by
updating the model parameters based on the aligned cluster
assignments ya. This approach enhances the model’s dis-
criminative power to discern and classify intents by predict-
ing cluster assignments. By concurrently learning at both the
instance and cluster levels, we gain a more comprehensive
and nuanced understanding of the data. This strategy, which
focuses on the fine-grained details of individual instances
and the overarching characteristics of clusters, significantly
enhances the overall performance and effectiveness of our
clustering efforts.

In particular, we first perform random erase data augmen-
tation and use the pre-trained encoder in section 4.2.1 to
extract two views of intent representations Ĩ and Ĩ

′
. To cap-

ture cluster-level information, we perform the classification
loss Lcls:

Lcls =
Lce(z,y

a) + Lce(z
′,ya)

2
, (9)

Lce(z,y
a) = − 1

N

N∑
i=1

log
exp((zi)

ya
i )∑K

j=1 exp((zi)
j
)
, (10)

where z and z′ are obtained with fu
2 : RD → RK , and Lce

is the cross-entropy loss. As ya is relatively consistent be-
tween adjacent clustering, it can provide stable supervised
signals for learning cluster-level patterns. Two augmented
views are used as hard examples for classification, which is
beneficial to enhance the model’s discrimination ability.

To capture instance-level information, we aim to pull
samples from the same class close to each other and push
samples from different classes away from each other. For
this purpose, we apply the supervised contrastive loss as
suggested in [49]:

Lscl =

− 1

2n

2n∑
i=1

1

|P (i)|
∑

p∈P(i)

log
exp(sim(zi, zp)/τ)∑2n

j=1 I[j ̸=i] exp(sim(zi, zj)/τ)
,

(11)

where zi is obtained with fu
3 : RD → RK , n is the number

of samples in a mini-batch, P(i) is the set of indices of
augmented samples with the same class of zi, and | · |
denotes the size of a set.

The overall loss of self-supervised learning can be writ-
ten as follows:

Lself-sup = Lcls + Lscl. (12)

That is, we joint train Lcls and Lscl to learn both cluster-level
and instance-level characteristics, which is helpful to obtain
friendly representations for clustering.

While some SOTA unsupervised clustering methods,
such as CC and SCCL, also perform representation learn-
ing at both the instance and cluster levels, our method
stands apart due to three key differentiating factors. First,
our method integrates a pre-training strategy to discern

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3340732

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on January 02,2024 at 02:03:23 UTC from IEEE Xplore.  Restrictions apply. 



7

distinct instances during the initial stages while concur-
rently learning latent correlations. This serves as an effec-
tive regularization procedure, facilitating more amenable
representations for subsequent clustering. Second, instead
of relying solely on weak pairwise constraints employed
by CC and SCCL, our method generates specific pseudo-
labels as self-supervised signals for each sample. Impor-
tantly, the cluster-level learning objectives in our model can
explicitly differentiate between various intent classes. Third,
our approach introduces an innovative perspective on the
creation of high-quality self-supervised targets. Particularly,
the centroid-guided mechanism enables effectively leverag-
ing historical clustering data to generate aligned instance-
level pseudo-labels. This not only greatly enhances cluster-
ing performance but also leads to excellent convergence.
These distinct features enable our method to outperform
current SOTA approaches, achieving substantial improve-
ments of over 30% in standard clustering metrics.

4.3 Semi-supervised New Intent Discovery
4.3.1 Semi-supervised Pre-training
In the pre-training phase, we hope to fully utilize the
limited annotated intent data to provide well-initialized
representations for clustering. For this purpose, we perform
data augmentation on both labeled and unlabeled data and
mix them in nearly equal ratios within a mini-batch for
contrastive learning. The positive pairs include: (a) samples
with the same class in the labeled data, (b) each sample
with its augmented view in both labeled and unlabeled data.
Thus, we propose the semi-supervised contrastive loss:

Lsemi-scl =

− 1

2n
[

∑
zi∈{zl}

1

|P(i)|
∑

p∈P(i)

log
exp(sim(zi, zp)/τ)∑2n

j=1 I[j ̸=i] exp(sim(zi, zj)/τ)

+
∑

zi∈{zu}

log
exp(sim(zi, z

′
i)/τ)∑2n

j=1 I[j ̸=i] exp(sim(zi, zj)/τ)
], (13)

where zi and z′
i are obtained with fs

1 : RD → RKknown
.

{zl} and {zu} are the sets of labeled and unlabeled data,
respectively, which satisfy |{zl}| + |{zu}| = 2n. Here we
use a simple data augmentation method, dropout [50], which
is efficient and works well. It uses dropout masks in trans-
formers to produce positive pairs with the same sample
feed-forward twice in neural networks. Moreover, we add
a cross-entropy loss Lce with supervised signals of labeled
data yl to enhance the discrimination ability for known
classes. The final loss of semi-supervised pre-training is
defined as:

Lsemi-pre = Lsemi-scl + Lce(z
l,yl), (14)

where zl is obtained with fs
2 : RD → RKknown

. Similar to
unsupervised pre-training, we use the pre-trained network
without fs

1 and fs
2 in the subsequent steps.

4.3.2 Clustering and Representation Learning
After pre-training, we can directly use all data to perform
clustering and representation learning as in unsupervised
new intent discovery. However, as the training iteration goes
on, we notice that some labeled samples from the same

class may be assigned to different clusters when mixed with
unlabeled data for clustering, which is also described as the
catastrophic forgetting phenomenon in [35]. To alleviate this
problem, we propose using supervised contrastive learning
with labeled data at the beginning of each training itera-
tion. Specifically, we use the dropout strategy to generate
augmented samples and add a new head fs

3 : RD → RK

to perform Lscl as in Eq. 11. It can not only strengthen the
memory of supervised similarity relationships but also be
beneficial to guide the subsequent clustering process.

Then, we successively carry out centroid-guided cluster-
ing (section 4.2.2) and self-supervised learning (section 4.2.3)
in the rest of each training iteration. fs

3 and another head
fs
4 : RD → RK are used for learning instance-level and

cluster-level information, respectively.

4.4 Estimate the Cluster Number K
To deal with an unknown cluster number K , we propose
a simple yet effective method for estimating K in unsu-
pervised and semi-supervised new intent discovery. Specif-
ically, the intent representations I after pre-training are first
used to perform K-Means++ with a large assigned cluster
number K’. Though the pre-training phase lacks explicit
supervised signals for distinguishing fine-grained clusters,
it can still help capture weak semantic similarity relations
using positive augmented samples or limited labeled data.

The assumption is that real clusters tend to be confident
of having much more samples that are similar to each other.
Specifically, in the unsupervised setting, we remove the low-
confidence clusters and estimate K by:

K =
K′∑
k=1

I {|Ck| ≥ t} , (15)

where Ck = {xi|yi = k, i = 1, 2, ..., N}, t is a threshold

defined as the mean cluster size
∑K′

k=1 |Ck|
K′ .

In the semi-supervised setting, we have access to a set of
known intent classes with a number Kknown through limited
labeled data. The goal is to estimate the number of new
intent classes Knew. Since the unlabeled data come from
both known and new classes, we need to first distinguish
the known intent clusters from clustering results. For this
purpose, we propose to use the limited labeled data as prior
knowledge for cluster induction. In particular, we perform
the Hungarian algorithm to obtain the alignment projection
G′

opt between the labeled centroids Cl ∈ RKknown×D and the
cluster centroids C ∈ RK′×D in the Euclidean space:

G′
opt = argmin

G′


Kknown∑
i=1

∥Cl
i −Cbi∥2

 , (16)

where G′ : {1, ...,Kknown} → {1, ...,K ′}, bi = G′(i) and i
are the corresponding centroid indices, and Cl is calculated
by averaging intent representations of each class in the
labeled samples. Then, we can find the set of known intent
cluster indices S = {G′

opt(i)}K
known

i=1 , and Knew is calculated
by:

Knew =
K′∑
k=1

I {(|Ck| ≥ t) ∧ (k /∈ S)} , (17)
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TABLE 1
Statistics of BANKING, CLINC150, and StackOverflow datasets. # indicates the total number of sentences. The unsupervised setting only contains

new intents. In the semi-supervised setting, we randomly select 25%, 50%, and 75% intents as known and treat the remaining as new intents.

Dataset #Known Classes + #New Classes #Training #Validation #Testing Vocabulary Length (max / mean)

BANKING 0 + 77 / 19 + 58 / 39 + 38 / 58 + 19 9,003 1,000 3,080 5,028 79 / 11.91
CLINC150 0 + 150 / 38 + 112 / 75 + 75 / 113 + 37 18,000 2,250 2,250 7,283 28 / 8.31
StackOverflow 0 + 20 / 5 + 15 / 10 + 10 / 15 + 5 12,000 2,000 6,000 17,182 41 / 9.18

where t is the same as in the unsupervised setting. The total
cluster number K is the summation of Kknown and Knew.

5 EXPERIMENTS

5.1 Datasets
We evaluate the new intent discovery performance with
three challenging benchmark datasets: BANKING [36],
CLINC150 [42], and StackOverflow [51]. The detailed statis-
tics for these datasets are shown in Table 1.

The BANKING dataset is a collection of customer service
queries specifically from the banking domain, comprising
13,083 queries across 77 classes. We follow the data splits
in [36] and create a validation set of 1,000 randomly sampled
utterances from the original training set.

The CLINC150 dataset is an out-of-scope intent classi-
fication dataset with 150 classes across ten domains. Since
the out-of-scope utterances lack specific intent annotations
for evaluation, we only use the 22,500 in-scope queries in
this work. The dataset is split into training, validation, and
testing sets by 8:1:1.

The StackOverflow dataset originally contains 3,370,528
technical question titles on Kaggle.com1. In this work, we
use the curated version of the dataset presented in [51],
consisting of 20,000 samples across 20 classes. The dataset
is split into training, validation, and testing sets by 6:1:3.

5.2 Baselines
5.2.1 Unsupervised Clustering
The unsupervised clustering baselines include traditional
machine learning methods: KM [14], AG [15], SAE-KM,
and deep clustering methods: DEC [21], DCN [23], CC [52],
SCCL [45].

For KM and AG, the intent representations are ex-
tracted with GloVe [53] by averaging the pre-trained 300-
dimensional token embeddings in the sentence. For SAE-
KM, DEC, and DCN, a stacked autoencoder (SAE) [22] is
used to capture semantically meaningful and discriminative
representations [21]. Since CC is a method in the field of CV,
we adapt it to this task by using BERT to extract intent repre-
sentations. For SCCL, we use the Sentence transformer [54]
as the backbone suggested in [45].

5.2.2 Semi-supervised Clustering
The semi-supervised clustering baselines contain a series
of SOTA methods in related fields, including: constrained
clustering: KCL [31], MCL [32], novel class discovery:

1. https://www.kaggle.com/competitions/predict-closed-
questions-on-stack-overflow/data

DTC [9], GCD [8], and new intent discovery: CDAC+ [3],
DeepAligned [10], DCSC [12], MTP-CLNN [13].

Since KCL, MCL, DTC, and GCD are used for CV tasks,
we adapt them to our task by using the BERT backbone. For
MTP-CLNN, the parameter of top-K nearest neighbors is set
to 50, 60, 300 for BANKING, CLINC150, and StackOverflow,
respectively, which is used or calculated as in [13]. For a fair
comparison, the external dataset is not used in MTP-CLNN
as other baselines.

5.3 Evaluation Metrics
Three widely used metrics are adopted to evaluate the
clustering performance, including normalized mutual in-
formation (NMI), adjusted rand index (ARI), and accuracy
(ACC). The higher values of these metrics indicate better
performance. Specifically, NMI is defined as:

NMI(ygt,yp) =
MI (ygt ,yp)

1
2 (H(ygt) +H(yp))

, (18)

where ygt and yp are the ground-truth and predicted labels,
respectively. MI (ygt ,yp) represents the mutual information
between ygt and yp, and H(·) is the entropy. MI (ygt ,yp)
is normalized by the arithmetic mean of H(ygt) and H(yp),
and the values of NMI are in the range of [0, 1].

ARI is defined as:

ARI =

∑
i,j

(ni,j

2

)
− [

∑
i

(ui

2

)∑
j

(vj
2

)
]/
(n
2

)
1
2 [
∑

i

(ui

2

)
+

∑
j

(vj
2

)
]− [

∑
i

(ui

2

)∑
j

(vj
2

)
]/
(n
2

) , (19)

where ui =
∑

j ni,j , and vj =
∑

i ni,j . n is the number of
samples, and ni,j is the number of the samples that have
both the ith predicted label and the jth ground-truth label.
The values of ARI are in the range of [-1, 1].

ACC is defined as:

ACC(ygt,yp) = max
m

∑n
i=1 I

{
ygti = m (ypi )

}
n

, (20)

where m is a one-to-one mapping between the ground-
truth label ygt and predicted label yp of the ith sample. The
Hungarian algorithm is used to obtain the best mapping m
efficiently. The values of ACC are in the range of [0, 1].

5.4 Experimental Settings
In the unsupervised setting, we use the data in both training
and validation sets for unsupervised learning with the aim
of discovering intent-wise clusters in the testing set. In
the semi-supervised setting, we randomly select a certain
percentage (25%, 50%, and 75%) of known intent classes. In
the training set, we keep labels for a limited portion (10%)
of the data from these known classes, while the remaining
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TABLE 2
Results of new intent discovery on the three datasets. KCR denotes the known class ratio, with 0% for unsupervised and 25%, 50%, and 75% for

semi-supervised settings. The proposed method USNID is significantly better than others with p-value < 0.05 (†) and p-value < 0.1 (*) using t-test.

KCR Methods BANKING CLINC150 StackOverflow

NMI ARI ACC NMI ARI ACC NMI ARI ACC

0%

KM 49.30† 13.04† 28.62† 71.05† 27.72† 45.76† 19.87† 5.23† 23.72†
AG 53.28† 14.64† 31.62† 72.21† 27.05† 44.13† 25.54† 7.12† 28.50†
SAE-KM 59.80† 23.59† 37.07† 73.77† 31.58† 47.15† 44.96† 28.23† 49.11†
DEC 62.65† 25.32† 38.60† 74.83† 31.71† 48.77† 58.76† 36.23† 59.49†
DCN 62.72† 25.36† 38.59† 74.77† 31.68† 48.69† 58.75† 36.23† 59.48†
CC 44.89† 9.75† 21.51† 65.79† 18.00† 32.69† 19.06† 8.79† 21.01†
SCCL 63.89† 26.98† 40.54† 79.35† 38.14† 50.44† 69.11† 34.81† 68.15
USNID 75.30 43.33 54.83 91.00 68.54 75.87 72.00 52.25 69.28

25%

KCL 52.70† 18.58† 26.03† 67.98† 24.30† 29.40† 30.42† 17.66† 30.69†
MCL 47.88† 14.43† 23.29† 62.76† 18.21† 28.52† 26.68† 17.54† 31.46†
DTC 55.59† 19.09† 31.75† 79.35† 41.92† 56.90† 29.96† 17.51† 29.54†
GCD 59.74† 26.04† 38.50† 83.70† 52.23† 64.82† 29.69† 15.48† 34.84†
CDAC+ 66.39† 33.74† 48.00† 84.68† 50.02† 66.24† 46.16† 30.99† 51.61†
DeepAligned 70.50† 37.62† 49.08† 88.97† 64.63† 74.07† 50.86† 37.96† 54.50†
DCSC 78.18 49.75 60.15 91.70 72.68 79.89 - - -
MTP-CLNN 80.04† 52.91† 65.06 93.17† 76.20† 83.26 73.35 54.80† 74.70
USNID 81.94 56.53 65.85 94.17 77.95 83.12 74.91 65.45 75.76

50%

KCL 63.50† 30.36† 40.04† 74.74† 35.28† 45.69† 53.39† 41.74† 56.80†
MCL 62.71† 29.91† 41.94† 76.94† 39.74† 49.44† 45.17† 36.28† 52.53†
DTC 69.46† 37.05† 49.85† 83.01† 50.44† 64.39† 49.80† 37.38† 52.92†
GCD 66.97† 35.07† 48.35† 87.12† 59.86† 70.89† 50.60† 31.98† 55.27†
CDAC+ 67.30† 34.97† 48.55† 86.00† 54.87† 68.01† 46.21† 30.88† 51.79†
DeepAligned 76.67† 47.95† 59.38† 91.59† 72.56† 80.70† 68.28† 57.62† 74.52†
DCSC 81.19 56.94 68.30 93.75 78.82 84.57 - - -
MTP-CLNN 83.42† 60.17† 70.97* 94.30† 80.17† 86.18 76.66† 62.24† 80.36
USNID 85.05 63.77 73.27 95.45 82.87 87.22 78.77 71.63 82.06

75%

KCL 72.75† 45.21† 59.12† 86.00† 58.62† 68.89† 63.98† 54.28† 68.69†
MCL 74.42† 48.06† 61.56† 87.26† 61.21† 70.27† 63.44† 56.11† 71.71†
DTC 74.44† 44.68† 57.16† 89.19† 67.15† 77.65† 63.05† 53.83† 71.04†
GCD 72.48† 43.36† 57.32† 89.42† 65.98† 76.78† 61.99† 43.61† 66.73†
CDAC+ 69.54† 37.78† 51.07† 85.96† 55.17† 67.77† 58.23† 40.95† 64.57†
DeepAligned 79.39† 53.09† 64.63† 93.92† 79.94† 86.79† 73.28† 60.09† 77.97†
DCSC 84.65 64.55 75.18 95.28 84.41 89.70 - - -
MTP-CLNN 86.19† 66.98† 77.22 95.45† 84.30† 89.46* 77.12† 69.36† 82.90†
USNID 87.41 69.54 78.36 96.42 86.77 90.36 80.13 74.90 85.66

data from known classes and all data from new classes are
unlabeled. To simulate real-world scenarios, the validation
set only contains labeled data from known classes. The goal
is to find known and discover new intent-wise clusters in
the testing set.

We use the pre-trained BERT language model with 12
transformer layers as the backbone, which is implemented
in [55]. For all experiments, we use AdamW [56] as the
optimizer to train the model. The training process consists
of 100 epochs, with a batch size of 128, and learning rates
searched from {1e-5, 2e-5, 5e-5}. The intent feature dimen-
sion D is 768. All the non-linear projection heads {fu

i }3i=1

and {fs
i }4i=1 have the same architecture of Wσ(·)+b, where

W and b are the weight matrix and bias term of a single
linear layer, and σ is the Tanh activation function.

For the unsupervised setting, the temperature τ and
random erase ratio a are set to 0.07 and 0.5, respectively.
In addition, we fine-tune with the parameters of the last
transformer layer as suggested in [3], [10], which can im-
prove training efficiency and maintain good performance.
For the semi-supervised setting, τ and a are set to {0.05,
0.4} for BANKING and StackOverflow, and {0.1, 0.3} for
CLINC150. The pre-training stage follows the same fine-
tuning strategy as in the unsupervised setting, while the
clustering and representation learning stage fine-tunes with
all the transformer layers as in [13], which can fully explore
high-level semantics with the guidance of labeled data.
The K-Means++ clustering algorithm is implemented with
the Scikit-learn [57] toolkit. The threshold δth for stopping
the training procedure is set to 0.0005. We implement our
approach in PyTorch 1.8.1 and run experiments on NVIDIA

Geforce RTX 3090 GPUs. For all experiments, we report the
averaged results over ten runs with random seeds of 0-9. All
the baselines are built upon our TEXTOIR platform [58].

6 RESULTS AND DISCUSSION

6.1 Results of New Intent Discovery

The main experimental results of unsupervised and semi-
supervised new intent discovery are presented in Table 2.
We highlight the best results for each setting (KCR=0%,
25%, 50%, and 75%) in bold and conduct significance t tests
between our method (USNID) and the other baselines2.

In unsupervised new intent discovery (KCR=0%), tra-
ditional clustering methods (e.g., KM and AG) show the
lowest performance across all datasets, mainly due to
their inability to comprehend complicated semantics using
static feature-engineering representations. On the contrary,
deep clustering methods demonstrate superior performance
(over 10% score improvement on ARI on BANKING and
StackOverflow datasets) by learning representations end-
to-end with deep neural networks during clustering. While
CC incorporates instance-level and cluster-level contrastive
learning techniques, its limitations in capturing cluster-level
relations without learning specific targets lead to perfor-
mance inferior to even some traditional methods. SCCL,
the current SOTA unsupervised method in NLP, improves
performance by replacing cluster-level contrastive learning
with a technique forcing each sample to learn from high-
confidence constructed soft targets via KL-divergence. Yet,

2. Since DCSC is not open source, we only report the results as in [12].
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TABLE 3
Ablation studies of USNID. ”w / o” means removing a component of USNID. Detailed information of each component can be seen in section 6.2.

KCR Stage 1 Stage 2
BANKING CLINC150 StackOverflow

NMI ARI ACC NMI ARI ACC NMI ARI ACC

0%

w/o UCL Full 66.69 30.17 41.65 84.73 50.76 62.00 36.61 18.06 31.89

Full

K-Means++ 62.16 27.97 40.69 77.56 38.36 53.26 22.08 9.05 23.66
w/o CGM 64.53 30.03 42.17 82.68 48.42 60.57 20.20 6.66 19.94
w/o CE 72.52 39.45 50.36 87.67 59.64 68.89 41.79 21.50 39.48
Full 75.30 43.33 54.83 91.00 68.54 75.87 72.00 52.25 69.28

25%

w/o Semi-SCL Full 80.06 52.01 61.43 92.99 73.24 78.85 71.04 60.73 71.52

Full

K-Means++ 65.99 33.71 48.68 83.21 52.16 65.13 48.10 33.66 53.93
w/o Self-Sup 71.39 41.00 55.12 89.75 67.41 76.76 57.44 43.05 63.85
w/o CGM 72.25 42.32 55.54 90.06 67.66 76.17 54.78 42.46 60.12
w/o Sup-SCL 80.16 52.20 63.01 93.78 76.63 82.38 72.10 61.56 73.13
Full 81.94 56.53 65.85 94.17 77.95 83.12 74.91 65.45 75.76

50%

w/o Semi-SCL Full 83.83 59.90 68.63 94.52 79.14 84.28 76.74 69.80 80.36

Full

K-Means++ 73.60 45.48 58.95 87.33 62.64 73.60 58.08 44.72 64.91
w/o Self-Sup 77.20 51.28 64.32 92.59 75.72 83.42 68.01 51.64 72.40
w/o CGM 79.67 55.32 67.18 92.95 76.47 83.41 67.19 58.64 75.02
w/o Sup-SCL 83.54 59.87 69.39 94.67 80.34 85.64 77.18 68.79 80.00
Full 85.05 63.77 73.27 95.48 82.99 87.28 78.77 71.63 82.06

75%

w/o Semi-SCL Full 86.70 67.32 75.91 96.10 85.14 88.99 79.03 73.78 84.17

Full

K-Means++ 78.06 53.89 67.29 90.24 70.05 79.29 68.10 54.93 74.78
w/o Self-Sup 81.80 60.33 72.60 94.84 82.79 88.41 73.57 57.51 78.00
w/o CGM 83.65 63.52 74.51 95.07 83.14 88.23 74.78 67.75 81.87
w/o Sup-SCL 85.91 66.05 75.61 95.70 84.22 88.86 78.58 72.06 83.52
Full 87.41 69.54 78.36 96.42 86.77 90.36 80.13 74.90 85.66

TABLE 4
Cluster number estimation results in unsupervised and

semi-supervised settings on the three datasets.

BANKING CLINC150 StackOverflow

KCR Methods K Error K Error K Error

0% USNID 74.00 3.90 137.80 8.13 16.80 16.00

25%
DTC 42.30 45.06 108.20 27.87 9.50 52.50
DeepAligned 63.50 17.53 122.00 18.67 16.60 17.00
USNID 74.30 3.51 139.60 6.93 16.80 16.00

50%
DTC 83.40 8.31 157.50 5.00 18.90 5.50
DeepAligned 65.10 15.45 125.60 16.27 11.40 43.00
USNID 77.50 0.65 143.20 4.53 18.30 8.50

75%
DTC 112.00 45.45 218.00 45.33 27.10 35.50
DeepAligned 68.83 10.61 128.60 14.27 16.60 17.00
USNID 82.80 7.53 154.50 3.00 18.90 5.50

our method, USNID, outperforms SCCL by 16.35%, 30.14%,
and 17.44% in ARI scores on the BANKING, CLINC150, and
StackOverflow datasets, respectively, and shows improve-
ments of over 10% in all three metrics on the BANKING
and CLINC150 datasets.

In semi-supervised new intent discovery (KCR̸=0%),
various methods (e.g., KCL, MCL, GCD, and CDAC+) con-
struct pairwise similarity relations and use them to learn
friendly representations for clustering by pulling similar
and repelling dissimilar pairs. DTC constructs the target
distribution as in SCCL and extends it by incorporating
temporal information and consistent constraints. Despite
this, their pairwise constraints have weak correlations, re-
sulting in difficulties in distinguishing complex semantic
intent-wise groups. In contrast, DeepAligned and DCSC,
which use alignment strategies to generate categorical dis-
crimination pseudo-labels, show significant improvements
of over 10% scores in ARI. MTP-CLNN is the existing
SOTA method in the semi-supervised setting, intensifies
the pairwise constraints by including additional similarity
connections in the nearest neighbor space. However, this
could lead to unstable clustering targets as the represen-

tation learning process progresses. Our method, USNID,
uses relatively stable targets guided by cluster centroids
and achieves better results. Notably, USNID outperforms
MTP-CLNN in ARI by 10.65%, 9.39%, and 5.54% with 25%,
50%, and 75% known classes on the StackOverflow dataset,
respectively and shows significant improvements in NMI
and ARI by over 1% across nearly all settings.

Interestingly, the performance of unsupervised USNID
outperforms more than half of the semi-supervised clus-
tering methods with 75% known classes. This is attributed
to two main factors: (1) USNID, unlike other methods
only using limited labeled data for pre-training, it strongly
augments all samples and applies unsupervised contrastive
learning, providing superiorly initialized representations
and avoiding potential overfitting problem. (2) It uses a
centroid-guided mechanism to create specific pseudo-labels
rather than ambiguous pairwise relations as clustering tar-
gets, which brings categorical information to guide class
differentiation.

The clustering performance is notably superior on the
CLINC150 dataset compared to the BANKING dataset,
primarily due to their inherent differences. The CLINC150
dataset contains utterances from 10 general domains, en-
abling better distinction of intent classes. In contrast, the
BANKING dataset, originates from a singular banking do-
main, limiting the use of diverse semantic backgrounds
for intent detection. Additionally, the BANKING dataset
presents overlapping intent categories and contains longer
text sequences with complex semantics, thus posing in-
creased challenges to the model’s capability to general-
ize effectively. The performance improves as the number
of known classes increases, indicating the positive influ-
ence of labeled data on clustering. Semi-supervised USNID
achieves top-tier results across all settings and substantial
improvements over all baselines and unsupervised USNID,
highlighting the advantage of our method in utilizing la-
beled data for new intent discovery.
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Fig. 4. Unsupervised and semi-supervised new intent discovery results with different cluster numbers on the three datasets.

6.2 Ablation Studies

To validate the effectiveness of the components in USNID,
we conduct comprehensive ablation studies and show the
results in Table 3. USNID has two stages: pre-training (stage
1) and clustering and representation learning (stage 2). For
stage 1, removing the unsupervised contrastive loss (w/o
UCL) results in a 13-34% drop in ARI, while removing
the semi-supervised contrastive loss (w/o Semi-SCL) causes
a 1-4% decrease across three datasets. These results high-
light the importance of pre-training in generating well-
initialized representations for clustering. In stage 2, directly
performing K-Means++ after stage 1 causes a 15-43% and
15-31% absolute ARI decrease in unsupervised and semi-
supervised settings, respectively. This underscores the sig-
nificance of this stage. Without the centroid-guided mech-
anism (w/o CGM), performing K-Means++ once and using
its pseudo-labels as targets for representation learning leads
This suggests that using historical centroids as guidance for

updating pseudo-labels effectively constructs high-quality
self-supervised signals for feature learning. Furthermore,
removing the cross-entropy loss (w/o CE) in the unsuper-
vised setting leads to a 2-30% decrease across all datasets. In
the semi-supervised setting, removing the self-supervised
learning loss (w/o Self-Sup) results in decreases of 5-15%, 1-
10%, and 6-22% in various KCR settings across all datasets.
This implies that specific pseudo-labels significantly im-
prove clustering performance over the pairwise constraints
of the contrastive loss. Lastly, omitting the additional super-
vised contrastive loss (w/o Sup-SCL) in the semi-supervised
setting leads to a 1-4% drop in ARI across all KCR settings
of the three datasets. This shows that Sup-SCL mitigates the
catastrophic forgetting problem and better uses labeled data.

6.3 Cluster Number Estimation
In this section, we explore new intent discovery in a more
challenging situation where the ground truth number of
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Fig. 5. The convergence curves of USNID in unsupervised and semi-supervised settings on the three datasets.

clusters is not known in advance. As suggested in [10], the
initial cluster number is set to large values (i.e., twice the
ground truth number) of 154, 300, and 40 for BANKING,
CLINC150, and StackOverflow, respectively. We compare
our approach (described in section 4.4) with two strong
baselines for estimating the number of clusters, as proposed
in [9], [10]. To evaluate the accuracy of the estimated cluster
numbers, we compute the error between the average of the
estimated K (obtained from ten runs of experiments) and
the ground truth number, with the lower error being better.
The results are shown in Table 4.

Our method consistently achieves the lowest errors on
all three datasets in semi-supervised settings, with the
exception of the 50% KCR setting on the StackOverflow
dataset. Though DTC performs well on the 50% KCR set-
ting, it is unstable with different amounts of labeled data
and performs worse than the other two methods in the
25% and 75% settings on all three datasets. DeepAligned
is a preliminary version of our method that also predicts K
by removing low-confidence clusters. However, it ignores
the use of prior knowledge of labeled data to induce the
known intent clusters, which may be falsely dropped under
the assumption of high-quality cluster selection. As a result,
it usually yields lower prediction results with 4-14%, 11-
17%, and 1-34% higher errors than our method on the
three datasets for all KCR settings. Interestingly, USNID
even exhibits competitive performance in the unsupervised
setting, suggesting that it can also benefit from the weak
semantic similarity relations learned through unsupervised
contrastive learning.

6.4 Effect of the Number of Clusters

In this section, we study the impact of the cluster number
on the performance of new intent discovery. As suggested
in [3], [10], we vary the number of clusters in the range of
one to four times the ground truth number. The last three
settings correspond to open-world scenarios for discovering
new intents, as is often the case in real applications. We use
ARI as the metric and show the results in Figure 4.

In unsupervised new intent discovery, USNID consis-
tently demonstrates the best performance with significant
improvements over the other methods on all three datasets.
It also maintains robust performance with small fluctua-
tions even when the assigned cluster number is large. We
observe that most unsupervised baselines are not sensitive
to the number of clusters, especially on the BANKING and
CLINC150 datasets. However, their performance remains

poor compared to the ground truth number, and there is
still a significant gap between them and our method.

In semi-supervised new intent discovery, USNID also
outperforms all other baselines on the three datasets. It
is particularly more robust than other methods, and its
performance is only slightly affected by the number of
clusters. In contrast, while MTP-CLNN performs well when
using the ground truth number, it is extremely sensitive
to the cluster number. Its performance drops dramatically
as the cluster number increases, resulting in much lower
performance than USNID. DeepAligned is relatively more
robust among these baselines as it uses a similar strategy to
estimate the cluster number as our method.

6.5 Convergence Analysis
In this section, we analyze the convergence of USNID by
tracking the variation of the cluster allocation difference
δ (described in section 4.2.2) over the number of training
epochs. The results are depicted in Figure 5.

It can be observed that, when using labeled data as prior
knowledge, our method stably and efficiently converges to
a small threshold (i.e., 0.0005) within a few epochs (around
25) on all three datasets. This demonstrates the usefulness
of labeled data in guiding the clustering performance. Fur-
thermore, increasing the amount of labeled data from 25%
to 75% of known intents leads to a lower δ and generally
faster convergence time. In the more challenging unsuper-
vised setting, although there are fluctuations in the first
few epochs, our method is still able to converge gradu-
ally to a small value. We suggest that this is because the
provided aligned targets, although not guided by any prior
knowledge, can still produce high-quality, consistent targets
despite potentially introducing some noise.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we address the problem of new intent dis-
covery in both unsupervised and semi-supervised settings,
which is relevant to real-world scenarios. We propose US-
NID, a novel clustering framework that utilizes several key
techniques to tackle this problem. First, USNID captures el-
ementary semantic features through a pre-training stage by
learning similarity information with self-augmented sam-
ples or limited labeled data, which has been shown to
enhance the subsequent clustering. Second, we introduce
a novel centroid-guided clustering mechanism to address
the issue of inconsistent cluster assignments in partition-
based methods during multiple clustering. This method
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obtains aligned targets by initializing the current clustering
with the cluster centroids from the previous clustering,
which demonstrates efficient convergence. Third, USNID
learns fine-grained intent-specific group characteristics by
jointly learning cluster-level and instance-level information
with the targets of aligned pseudo-labels from the previous
iteration’s clustering, which significantly improves perfor-
mance with clustering-friendly representations. Incorporat-
ing high-quality prior knowledge from labeled data has also
been shown to bring additional benefits. When evaluated
on several intent benchmarks, USNID outperforms all other
methods in unsupervised and semi-supervised settings by
a significant margin. Furthermore, we propose an effective
method for estimating the number of clusters, which helps
maintain robust performance in realistic scenarios without
prior knowledge of the number of new classes.

In this study, our approach still depends on the specifi-
cation of a large cluster count, an aspect that is somewhat
reliant on empirical experience. In our future research, we
intend to investigate the possibility of automatically deter-
mining the number of clusters with minimal assumptions.
Additionally, our proposed framework is currently offline
and necessitates the completion of clustering across all data.
We foresee the potential for future research to extend our
methodology to an online strategy, which could prove more
efficient and applicable to larger datasets. Finally, while we
currently employ K-Means++, there might be potential for
exploring more efficient and effective centroid-based clus-
tering methods. By addressing these areas for improvement,
we aspire to expand the capabilities of our framework,
ultimately enhancing both its applicability and efficiency.
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